
The abundance of legacy software still in use
today is astounding. Many software modules
have their origins 20 years or earlier and have
been reused, reengineered, or integrated into
other applications with little expectation by
the original authors that the module would
be used beyond the original scope. The
reasons for maintaining legacy software
beyond its expected lifetime are numerous,
including application expertise by the origi-
nal author and prohibitive costs of rewriting.
Furthermore, the original source code has
already been certified and quality controlled
by internal experts, so the time required to
rewrite the code may become prohibitive.

Today, many legacy applications are moving
to the Web environment to take advantage
of an easily maintainable and accessible
interface and to allow for universal access.
Furthermore, the applications use an enter-
prise framework involving centralized
servers, databases, client Web front ends, and
various other subsystems. This article
discusses some of the issues in developing
quality software systems when integrating
legacy software into Web-based enterprise
applications. The main issues are discussed
and examples are given using a case study in
the oceanic data processing field.

Key words: enterprise applications, legacy
codes, oceanic data processing, reengineering,
scientific computing, Web applications

INTRODUCTION
Quality pioneer W. Edwards Deming once said: “It is not neces-
sary to change. Survival is not mandatory.” By this, of course, he
meant that change is inevitable. Unfortunately, change is not
always immediate, even in the rapidly changing area of software
development. This is particularly evident in the abundance of
legacy software still in use today. Legacy software is sometimes
referred to as “any information system that significantly resists
modification or evolution” (Brodie and Stonebraker 1995) or in
practical terms as “software that is vital to our organization, but
we don’t know what to do with it” (Bennet 1995). Legacy systems
often run on antiquated hardware and are difficult to maintain
since the original developers are usually not with the organization
anymore, which may lead to an overall lack of understanding of
the internal workings of the program. Nonetheless, there are
numerous reasons legacy code is still in use today in many organ-
izations. The main reason appears to be that they are “fully
functional systems that are required to support the ongoing busi-
nesses of the institution” (Laverty et al. 2004). Within the
authors’ organization, managers often reasoned that:

• The software functions satisfactorily so there is no need
to replace it.

• The software still provides a recognized scientific and
technical approach for mathematical analysis.

• The user environment (hardware and interface) has not
changed.

S O F T W A R E E N G I N E E R I N G P R O C E S S E S

Software Quality:
From Legacy

Codes to
Web-based
Enterprise

Applications
ARMIN PRUESSNER

CHRISTOPHER PATERNOSTRO
National Oceanic and Atmospheric Administration,

National Ocean Service

4 SQP VOL. 8, NO. 3/© 2006, ASQ

©
20

06
, A

SQ

Software Quality: From Legacy Codes to Web-based Enterprise Applications

• The cost of developing a new system from
scratch is prohibitive.

• The system is not well understood and is either
not fully documented or documentation has
been lost.

• The system was originally designed by subject-
matter experts whose expertise was lost with
their departure.

Instead of rewriting legacy code from scratch to allow
for universal access, legacy software is often integrated
into Web-based enterprise applications, which are host-
ed on a server and simultaneously provide services to a
large number of users over a computer network. The
integration of legacy software provides challenges in
terms of software quality. The authors discuss some of
the key issues in designing a quality enterprise software
application involving legacy codes. They illustrate some
of the key concepts by giving examples from their own
scientific computing application. The software being
developed is an oceanic data processing system for the
National Ocean Service (NOS) at the National Oceanic
and Atmospheric Administration (NOAA), which
involves numerous subsystems, including a Web inter-
face, databases, and legacy components. The legacy
components were developed by subject-matter experts
and are difficult to redevelop for many of the reasons
mentioned previously, as well as the focus of the expert-
ise changing from pure mathematics to ocean science.

APPLICATION OVERVIEW

Oceanic Data Processing
The Center for Operational Oceanographic
Products and Services (CO-OPS) at NOS has
the mandate to provide the nation with
accurate observed water-level information
and tide and tidal current predictions for the
U.S. coasts. Sensors on the ocean floor or
side-mounted sensors on bridges, piers, or
other structures provide data on water levels
and current velocities (speed and direction),
as well as meteorological information. The
incoming data are quality controlled and ana-
lyzed to provide curve fit coefficients to make
predictions of future water currents and
levels. Traditional tidal harmonic analyses of

www.asq.org 5

FIGURE 1 Water level predictions using legacy
analysis routines

5

4

3

2

1

0

-1

-2

Observation

Residual

8770613 Morgan Point, TX
Water Levels

Fe
et

 A
bo

ve
 M

LL
W

Observed Height: 1.04 ft.
Predicted Height: 1.49 ft.
Observed Time: 16:00 (CDT) 05/01/05

04/30/05
12:00

05/01/05
0:00

05/01/05
12:00

05/02/05
0:00

05/02/05
12:00

05/03/05
0:00

Prediction

the observations are used to compute the coefficients in
response to forcing of the Earth-moon-sun gravitational
system. These coefficients are then used in a tidal predic-
tion equation to create tidal predictions (Schureman
1940). Figure 1 shows a resulting plot of water-level
predictions obtained via the analysis routines.

Currently, data processing is done either manually
by oceanographers on a workstation interacting with
database queries, file transfers, running analysis
routines, and other individual applications or semiauto-
matically for certain Web-based product applications.
Depending on the application, the processes involve
sequential use of separate programs and procedures
and, often, separate machines. Some of the more inten-
sive manual procedures require oceanographer
expertise to analyze and accept results (for instance,
the procedure for analysis of the seasonal constituents
and the process for rejection of certain low amplitude
constants for use in the tide prediction equation).

Although the software is reliable, the process is
discontinuous, disjointed, and error prone because of
complex input requirements (that is, complicated user-
generated control files) that are inefficient for handling
large volumes of data and make troubleshooting and diag-
nostics very difficult. It also results in potentially
inconsistent results depending upon the interface.
Separate applications of the legacy code have been devel-
oped by separate oceanographers and information
technology (IT) groups with minimum collaboration until
recently. With the anticipation that a large number of
sensors will be deployed in the near future, a decision was
made to integrate the software modules into a universally

Software Quality: From Legacy Codes to Web-based Enterprise Applications

accessible Web-based enterprise application known as
C-MIST (see Paternostro, Pruessner, and Semkiw 2005).
The authors’ solution approach involves all analysis rou-
tines as used previously, but makes use of a wrapping
technique, which “wraps an existing component in a new
more accessible software component” (Bisbal et al. 1999).
The technique of wrapping as opposed to redevelopment
has significantly less impact on the underlying system
(Bisbal et al. 1999) and thus is attractive for the project.

Subsystems
The system consists of various modules. A rough
schematic of the software architecture is shown in Figure
2. The software suite includes a Web-based user interface,
a database to store the raw data and analysis results,
analysis routines to generate the predictions, plotting and
reporting routines, interfaces to select data, modules to
input metadata, as well as tools to request data (via FTP
or Web services). The analysis tools correspond mostly to
legacy FORTRAN software (Shureman 1940; Zervas
1999), which are treated as black box modules.

Legacy Components
The curve fit analysis modules to generate the predic-
tions involve complex mathematical routines (harmonic
decomposition analysis) developed many years ago by
experts in the field. At that time, they went through rig-
orous quality control measures and have been approved
by NOS for use in analyzing data and disseminating
results to the public. Unfortunately, they are difficult to

6 SQP VOL. 8, NO. 3/© 2006, ASQ

redevelop due to lack of subject-matter expertise, plus
source code is poorly documented and therefore difficult
to follow. There is also limited capability to reengineer
the source code directly. Only limited documentation for
the previous updates of legacy code and procedures for
harmonic analysis and prediction exist (Zetler 1982). It
should also be noted, that redevelopment at this time is
not practical since the original software has already gone
through the rigorous approval process and quality con-
trol would take a prohibitively long time, given the
urgency of processing large volumes of incoming data.

SOFTWARE QUALITY MODEL
(CMMI)
The key to generating quality software (including software
involving reengineering or integration of legacy code) is to
apply proven quality principles both for products and
processes. This is facilitated by choosing a quality model
and having all project team members follow the structured
model guidelines closely. The key notion of importance is
not so much the particular model—there are many equal-
ly effective models—but rather that a proven quality
model is chosen. This helps guide the project team in
being proactive in making quality an integral part of the
product and process early on, rather than reactive when
problems occur. Clearly the cost of quality rises exponen-
tially the later the error is found (Schulmeyer and
McManus 1999; Pressman 1997). Thus, it is important to
include quality principles early in the project life cycle.

The authors chose the Capability Maturity Model
Integration™ (CMMI) (SEI 2005a) in its staged represen-
tation. In particular, they focused on the CMMI for
software engineering. The staged representation involves
five maturity levels ranging from ad-hoc reactive proce-
dures to proactive procedures focusing on continuous
process improvement. Figure 3 comes from SEI 2005b
and shows the various maturity levels illustrating the dif-
ferences between an unpredictable, reactive environment
(Level 1) to a controlled environment focusing on contin-
uous improvement (Level 5). Note CMMI is applicable to
all areas, not just software engineering. Also, it should be
clear that CMMI involves technical procedures as well as
management techniques to achieve a quality product.

The project team at NOAA/NOS/CO-OPS has attained
CMMI Level 3 and is applying these procedures to the
C-MIST project. In particular, many CO-OPS projects pre-
viously did not follow any framework at all: basic

C-MIST System

Database

Metadata input Data Ingestion

Client Web
Browser

Requests
for Data

FTP
View Stations/

Select Data

Analysis

Plots and
Reports

©
20

06
, A

SQ

FIGURE 2 Software architecture of the
C-MIST sytem

©
20

06
, A

SQ

Software Quality: From Legacy Codes to Web-based Enterprise Applications

www.asq.org 7

FIGURE 3 Staged representation of Capability Maturity Model Integration™

requirements were documented and then developers
started writing code based on these (minimal) require-
ments. The work would be presented to the customer, who
would come back with more (or new) requirements. The
process would iterate until a stable product emerged that
the customer was happy with. This ad-hoc setup is clearly
not efficient for a large-scale project such as C-MIST.

By following the CMMI, the authors focused on a
structured methodology combining planning, manage-
ment, development, testing, documentation, and
training to help deliver a quality product. They started
by generating project management plans, which
allowed for tracking of costs and schedule. These plans
allowed for repeatable successes on previous projects
and were deemed applicable to C-MIST. Furthermore,
the authors defined standard techniques and planning
documents for various phases of the software life cycle,
including requirements elicitation, software require-
ments specifications, evaluation techniques for
third-party software, physical designs, testing plans,
and long-term maintenance.

This article will not describe the main techniques
of CMMI, but will focus on integration of legacy code
within a Web-based enterprise framework. It should be
clear, however, that techniques as described in (CMU
1994; SEI 2005a; SEI 2005b) give a structured good
framework, which can be beneficial for large-scale proj-
ects. The authors are making use of many of the
techniques in striving to meet their own project goals.

• Requirements Management
• Project Planning
• Project Monitoring and
 Control
• Supplier Agreement
 Management
• Measurement and Analysis
• Process and Product Quality
 Assurance
• Configuration Management

Maturity Level 2

7 Process Areas

Staged

• Requirements Development
• Technical Solution
• Product Integration
• Verification
• Validation
• Organizational Process
 Focus
• Organizational Process
 Definition
• Organizational Training
• Integrated Project
 Management
• Risk Management
• Integrated Teaming
• Integrated Supplier
 Management
• Decision Analysis and
 Resolution
• Organizational Environment
 for Integration

Maturity Level 3

14 Process Areas

• Organizational Process
 Performance
• Quantitative Project
 Management

Maturity Level 4

2 Process Areas

• Organizational Innovation
 and Deployment
• Causal Analysis
 and Resolution

Maturity Level 5

2 Process Areas

LEGACY CODE SOFTWARE
QUALITY
During requirements elicitation and later during concep-
tual design it became clear that the key to software
quality involving the legacy code module involved the
following main steps:

1. Verify the results of the legacy code running
in a new environment (hardware/software).

2. Write a generic application program interface
(API) wrapper around the legacy code to
facilitate communication to and from the
enterprise application framework.

3. Design an enterprise application framework
using modular subsystems.

4. Design a generic API from the enterprise applica-
tion to the subsystems so that the subsystems
can be replaced in the future.

For the authors’ application, verification in step 1 was
done using data sets and results of previous analyses. The
reproducibility of these results and the evaluation by the
users of the routines were used for verification.

For some applications source code is not available, so
step 1 would not be an issue. In this case, the application
still runs under the original hardware/software environ-
ment. However, all other steps listed previously still
apply. In the authors’ application they were able to har-
vest the original source code and port it from the original
environment (64 bit SGI) to the new one (32 bit Linux).

Software Quality: From Legacy Codes to Web-based Enterprise Applications

8 SQP VOL. 8, NO. 3/© 2006, ASQ

Runtime Behavior of Legacy
Code in New Environments
When running legacy code, which often has been tailored
to a particular hardware/software environment, care must
be taken when porting to a new environment. Beyond
basic issues of compiling the source on the new environ-
ment, one must verify that the software produces the
same results. In particular, the authors want to confirm
two critical verification criteria: eliminating environment-
dependent logic and robust numerical precision.

Eliminating Environment-
Dependent Logic
The first issue involves logic due to if-then blocks, where
the criteria are based on floating point values. The
authors want to make sure the software behaves the
same and business logic is not dependent on precision.
Usually, in order to accurately verify logic, a design spec-
ification is necessary. In this case, however, a design
specification likely never existed and one is left to exam-
ine the code manually. Environment-dependent logic is
often an issue in poorly written code involving scenarios
such as that found in Table 1. In the given example the
idea is to proceed with one part of business logic if the
variable is essentially nonzero. It should be clear from
the code listed that depending on numerical precision of
the floating point variable ƒ and computations involving
ƒ, logic could change depending on hardware/software,
that is, the software may or may not end up within this
block of code. This logic becomes hardware/operating
system dependent, for example, 64 bit computing envi-
ronments have a potentially higher precision rate than
32 bit environments, so ƒ may attain positive values less
than the criteria 1.0E-20 given. In that case, even
though the intent was for nonzero positive values to
enter that block, for this given environment one may
not proceed with the block of business logic.

The authors’ experiments with porting C-MIST
legacy source to a new environment (from 64 bit SGI
to 32 bit Linux) involved running numerous and varied
input data sets in batch mode and comparing the
resulting output parameters. They generated plots of
water speed and direction predictions to determine if
they produced similar results. The intent at this step
was to verify logic, not to determine how closely the
result matched the expected result, that is, did they
traverse the same code and receive the expected result
type? This can be thought of as a pass-fail type of test.
All of the ported code performed as expected.

Robust Numerical Precision
Another issue is numerical accuracy, that is, are the

results the same (given a relative tolerance) on the differ-
ent platforms and operating systems? In order to verify
numerical accuracy and consistency, one can measure the
relative error of results obtained in the old environment to
the new one. Let rerr be the relative error and sold and snew

be the solutions obtained in the old and new environ-
ments, respectively. One can define the relative error as:

This representation of the relative error may differ
from some textbook definitions (see Burden and Faires
2005). The representation in Equation 1 is also useful
since it allows for a continuous representation of the rel-
ative error and balances the error between a relative (for
large values of sold) and an absolute (for small values of
sold) scale. Adding one to the denominator is necessary
since sold may attain the 0 value in which case the relative
error is undefined. In some cases the one in the denomi-
nator may also be replaced by some positive value α
greater than machine precision. Although the absolute
error is often appropriate for data sets where all values
have roughly the same order of magnitude, for values
covering a wide range, the relative error often provides
more useful information. See Mittelmann and Pruessner
(2006) for a discussion on metrics in error analysis and
choosing appropriate error measures in comparisons.

If the authors’ measured data have only two signif-
icant digits (as is the case here), they cannot expect
to have a higher precision of the solution than two
significant digits. Significant digits are the number of
digits of accuracy of a number when specified in expo-
nential notation with leading nonzero (for example,

sold - snewrerr = (Equation 1)
1+ sold

Float f;
If [f > 1.0E-20] then

Do something…
End if

TABLE 1 Example of environment
dependent logic

©
20

06
, A

SQ

1.234 E-10 has four significant digits
and 0.923 = 9.23 E-1 has three signifi-
cant digits). Being aware of significant
digits is important for the following rea-
son: Although computers can store
numeric figures down many decimal
places it does not mean that all those
decimal places are significant. During
the authors’ numerical verification of
legacy software, they looked at the pre-
dicted speed and direction results for
various oceanic data sets and compared
the results of the software running in
the old environment to the new. The
relative error was computed as in
Equation 1. Figure 4 shows the relative
error of computing curve fits for water
speed. The plot shows that less than
one percent of values had any error at
all (99.78 percent had no error), with
the largest measurable error about 1.57
E-3 and an average error of 5.31 E-7.
For plots of this type, where a larger
percentage of samples have nontrivial
(nonzero) errors, ordering the relative
errors by size may give more insight
into the data. In the authors’ case, how-
ever, it is clear that few samples have
any error at all so that no additional
useful information can be extracted
using this method. In any case, the
authors illustrate that their software
performs as expected. For a more
detailed description of numerical precision and
round-off errors see Burden and Faires (2005).

Generic APIs to Legacy Code
In order to encapsulate legacy components and possible
quality defects, a generic API or programming interface to
the legacy code must be written. The API wrapper accom-
plishes several things. First, it enables communication to
the legacy module in a uniform manner. Second, it han-
dles all error and exception handling consistently so that
potential problems within the legacy module can be iso-
lated and captured directly via the API wrapper. Finally,
generic APIs with exception handling are good program-
ming practice for modern applications and enable
reengineering and reusability for other applications.

FIGURE 4 Relative errors moving to new
hardware/software environment

The C-MIST application communicates with the
legacy code via a generic API wrapper. This involves a
set number of arguments such as the data input files,
data output files, and a control file name containing
legacy subsystem specific options. This wrapper calls
the legacy subsystem and verifies that the module ran
successfully. It also verifies that the appropriate output
file was generated. Furthermore, the wrapper parses
the output file to generate a generic-format output.
The output file may be in comma-delimited (CSV) or
extensible markup language (XML) format and con-
tains the attribute name and value. Generic output
formats are a good idea since they enable enterprise
applications to make use of results regardless of the
underlying subsystem and output format produced.

Software Quality: From Legacy Codes to Web-based Enterprise Applications

www.asq.org 9

0.003

0.002

0.001

0

-0.001

-0.002

-0.003
0 20000 40000 60000 80000

Control Chart for Relative Error Porting
to New Hardware/Software

Re
la

ti
ve

 E
rr

or

Sample

Error Statistics
Samples error free:
 99.7%

Average:
 5.31 E-7

Max:
 1.57 E-3

©
20

06
, A

SQ

FIGURE 5 API to legacy components

Legacy Code Legacy Specific
Output

6. Returns exit
code and

generic output

1. Calls legacy
code using

generic input
arguments

2. Constructs
legacy code

specific
instructions

3. Calls legacy
code with

specific
instructions

4. Generates
analysis specific

output file

5. Parses
specific output

file and
constructs

generic output

Enterprise Application

API Wrapper

Generic Output
(XML, CSV)

©
20

06
, A

SQ

Software Quality: From Legacy Codes to Web-based Enterprise Applications

10 SQP VOL. 8, NO. 3/© 2006, ASQ

Figure 5 illustrates the
API to the legacy applica-
tion with step-by-step
instructions. The enterprise
application communicates
with the legacy code via an
API wrapper with generic
input arguments (step 1).
The API constructs any lega-
cy code-specific instructions
(such as a control file) and
calls the application (steps 2
and 3). The application runs
as in the old environment,
constructing a legacy-specific
formatted output file (step
4). The wrapper then parses
the specific output to gener-
ate generic (CSV or XML)
formatted data files (step 5).
The wrapper returns an exit code and the generic output
file to the enterprise application for further processing
(step 6). The key notion is that the enterprise application
does not need to know any specific details of the legacy
code. The communication layer follows a generic format
(generic input arguments and generic output format),
simplifying further processing of results.

Modularity of Subsystems in
Enterprise Applications
Enterprise applications involve many subsystems
including databases, visualization modules, reporting
tools, and analysis routines. Furthermore, they often are
maintained over long periods of time with additional fea-
tures or functionality added after the initial release.
These additional features often extend beyond the orig-
inal requirements specifications. The changing scope of
enterprise applications over the product lifetime makes
modular design a necessary feature of physical design.
The advantages of modular design include:

• Uniform APIs and exception handling. As for lega-
cy applications, the use of generic and uniform
APIs to modules greatly simplifies maintenance
and communication to and from each of the
subsystems in the enterprise application. The uni-
form API and exception handling measures allow
the subsystem-specific features to be encapsulated
so the rest of the application does not need to be
aware of the specifics of the particular subsystem.

• Uniform data structures and formats. Uniform
data structures and data formats allow for simple
addition of types to be added to the interface. For
example, C-MIST has data structures represent-
ing generated plots. A history of plots generated
can easily be displayed via the Web interface by
just looping through the plot data structure.
Figure 6 shows the elements within the plot data
structure, which includes attributes such as plot
name, plot phase, station/sensor ID, bin number
(an identifier associated with depth), and plot
description. If an analysis data structure is added
then the analyses in the data structure can easi-
ly be displayed in the Web application by looping
in a similar manner. No new code needs to be
written to display contents of new objects that
use the same data structure format.

• Simplified long-term maintenance and
enhancements. Modularity of subsystems allows
for simplified long-term maintenance of the
enterprise application by encapsulating logic
and potential errors to separable modules. In
addition, it also allows for simple replacement of
modules over time, which is particularly impor-
tant if the legacy subsystems are to be replaced
in the future. Often, the legacy components are
replaced as resources become available and lim-
itations of the legacy code become a bottleneck.

FIGURE 6 Elements in plot data structure

©
20

06
, A

SQ

Mittelmann, H., and A. Pruessner. 2006. A server for automated perform-
ance analysis and benchmarking of optimization software. Optimization
Methods and Software 21: 105-120.

Paternostro, C., A. Pruessner, and R. Semkiw. 2005. Designing a quality
oceanographic data processing environment. In Proceedings of the
MTS/IEEE Oceans 2005 Conference, Washington D.C., September 18-23.

Pressman, R. S. 1997. Software engineering: A practitioner’s approach,
4th edition. Boston: McGraw-Hill.

Schulmeyer, G. G., and J. I. McManus. 1999. Handbook of software
quality assurance, 3rd Edition. Upper Saddle River, N. J.: Prentice Hall.

Schureman, P. 1940. Harmonic Analysis and Prediction of Tides. Special
Publication no. 98, revised edition. Washington, D.C.: U.S. Department
of Commerce, Coast and Geodetic Survey.

Software Engineering Institute. 2005a. Welcome to the CMMI Website.
Pittsburgh: Carnegie Mellon University. Available online at
http://www.sei.cmu.edu/cmmi/.

Software Engineering Institute. 2005b. The Capability Maturity Model
Integration (CMMI) Overview, technical presentation. Pittsburgh:
Carnegie Mellon University. Available online at
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf.

Zervas, C. 1999. Tidal current analysis procedures and associated com-
puter programs. Technical Report NOS CO-OPS 0021, NOAA. Silver
Spring, Md.: U.S. Department of Commerce.

Zetler, B. D. 1982. Computer applications to tides in the national ocean
survey. Supplement to Manual of Harmonic Analysis and Prediction of
Tides, special publication no. 98. Washington, D.C.: U.S. Department of
Commerce, National Ocean Survey.

BIOGRAPHIES

Armin Pruessner is a scientific computing consultant currently
developing large-scale oceanographic data processing systems
for the National Oceanic and Atmospheric Administration
(NOAA). He holds a master’s degree in applied mathematics and
scientific computing from the University of Maryland, College
Park. He is an ASQ Certified Software Quality Engineer (CSQE)
and has published numerous journal articles in areas ranging
from numerical linear algebra and mathematical optimization to
performance analysis and software quality. His research interests
are in algorithms and scientific computing, with an emphasis on
large-scale robust systems, useability, and quality. He can be
reached by e-mail at Armin.Pruessner@noaa.gov .

Christopher L. Paternostro is an oceanographer with the National
Oceanic and Atmospheric Administration and acting head of the
National Current Observation Program. He holds a master’s
degree in oceanography from Texas A&M University. His research
interests include coastal and estuarine circulation, computation-
al hydrodynamic modeling, and numerical model development.

CMM® and CMMI® are registered trademarks of the Software Engineering
Institute, Carnegie Mellon University.

CONCLUSIONS
Although development on the C-MIST project is still in
progress, the authors have shown how to migrate legacy
applications to Web environments within an enterprise
framework involving databases, Web front ends, and vari-
ous other subsystems. Many issues are the same as for
regular software quality assurance (particularly following
a standard quality model); however, emphasis must be
placed on key issues specific to legacy applications. These
include verification of legacy results within the new envi-
ronment, that is, does the software behave the same in
the new environment as expected? Furthermore, generic
API wrappers to the legacy components should be used.
Generic APIs allow for encapsulation of legacy compo-
nents and possible quality defects, consistent error and
exception handling, and reusability within other
applications. Modularity of subsystems is important in
large-scale applications with many components (includ-
ing legacy components) since subsystems can be replaced
as needed with little impact on other subsystems. Note
that it is common that legacy subsystems are eventually
rewritten. Finally, the use of generic format output files
can also simplify the replacement of subsystems or addi-
tion of new subsystems. Although the authors’ case study
involves a scientific computing application integrating
legacy components into Web-application frameworks, the
concepts are beneficial to all legacy integration projects.

Acknowledgment

The authors wish to thank the reviewers and the editor for their helpful
comments, which greatly improved the original manuscript.

REFERENCES

Bennet, K. H. 1995. Legacy systems: Coping with success. IEEE Software
12, no. 1: 19-23.

Bisbal, J., D. Lawless, B. Wu, and J. Grimson. 1999. Legacy information
systems: Issues and directions. IEEE Software 16, no. 5: 103-111.

Brodie, M., and M. Stonebraker. 1995. Migrating legacy systems:
Gateways, interfaces and the incremental approach. San Francisco:
Morgan Kaufman.

Burden, R. L., and J. D. Faires. 2005. Numerical analysis, 8th edition.
London: Brookes-Cole.

Carnegie Mellon University, Software Engineering Institute. 1994. The
Capability Maturity Model: Guidelines for Improving the Software
Process. Reading, Mass.: Addison Wesley.

Laverty, J., C. Boldyreff, B. Ling, and C. Allison. 2004. Modeling the evo-
lution of legacy systems to Web-based systems. Journal of Software
Maintenance and Evolution: Research and Practice 16: 5-30.

Software Quality: From Legacy Codes to Web-based Enterprise Applications

www.asq.org 11

